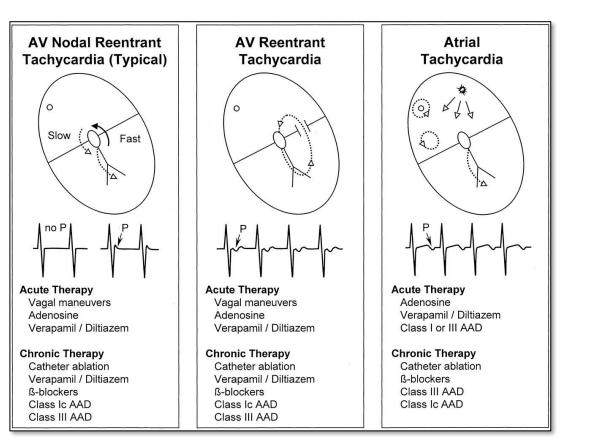


Deep Learning-Based Classification of Paroxysmal Supraventricular Tachycardia Types Using Sinus Rhythm Electrocardiograms

Soonil Kwon, M.D.

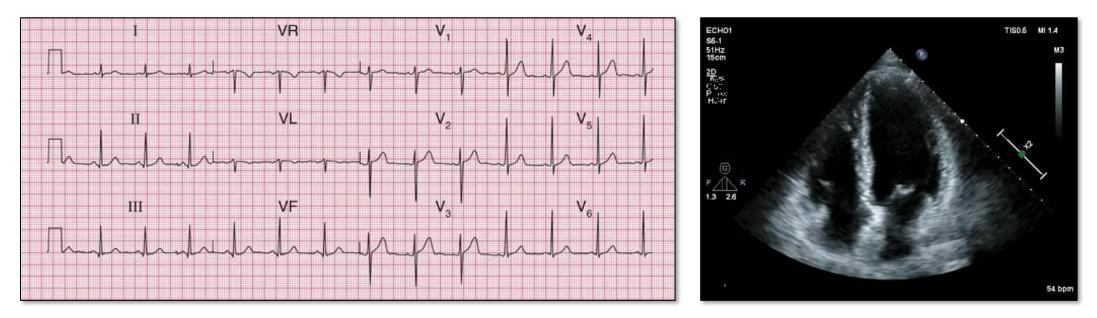
Division of Cardiology Department of Internal Medicine Seoul National University Hospital, Seoul, Republic of Korea Korean Heart Rhythm Society COI Disclosure

> Name of First Author: Soonil Kwon


The authors have no financial conflicts of interest to disclose concerning the presentation

Introduction: PSVT

- Prevalence: 0.2~0.3%
- Incidence: 35/100,000 PY
- Most common PSVT types: AVNRT, AVRT
- Success rate of RFCA for PSVT: ≥90%
- Orthodromic AVRT with concealed AP:
 - 30% of PSVT without preexcitation
- To confirm the diagnosis of PSVT types
 - Requires EP study



J Am Coll Cardiol. 1998:(1);150-7 Supraventricular Tachycardia. N Engl J Med. 1995;332:162-173 Josephson ME. Clinical cardiac electrophysiology: techniques and interpretations. 2nd ed. Philadelphia: Lea & Febiger, 1993

Difficulties in identifying PSVT types

- For patients without preexcitation,
 - AVNRT vs. concealed AVRT
 - Tachycardia ECGs are often unavailable
 - Oftenly normal echocardiography and ECGs

- > DDx of PSVT types require invasive tests (EP study)
- > What if deep learning can predict PSVT types by analyzing ECGs?

 Investigate deep learning-based classification of AVNRT and concealed AVRT using sinus rhythm ECGs

Methods

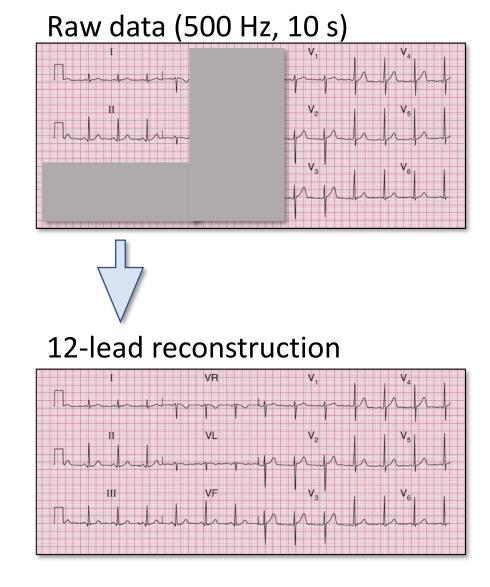
DesignRecruitingEligibility

Study N

Retrospective single-center cohort study Cardiology clinics in 2001-2021 Patients with AVNRT or AVRT - confirmed by EP study and - with normal ECG available prior to ablation

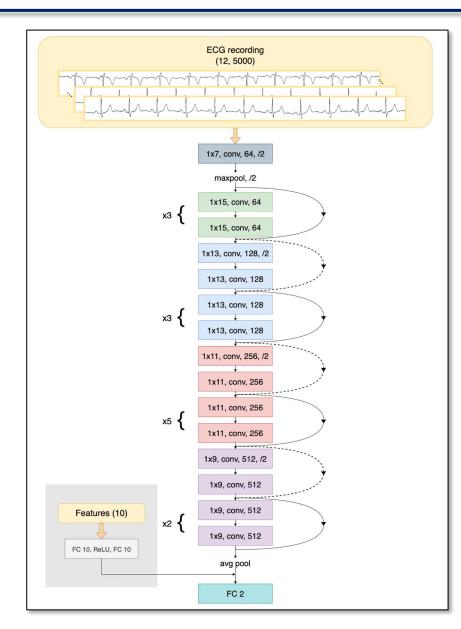
1001 pts

- AVNRT : 696 pts
- cAVRT : 305 pts


DL architectureAnalysis

ResNet-34, pre-trained with open-source DB^{*} 10-fold cross validation SN, SP, AUROC Grad-CAM

* PhysioNet/CinC Challenge 2021 dataset


Training dataset construction

- Baseline model
 - ECG raw data only
- Experimental model
 - ECG raw data and
 - ECG features
 - Heart rate
 - PR interval
 - QRS duration
 - QT interval
 - P axis
 - R axis
 - T axis

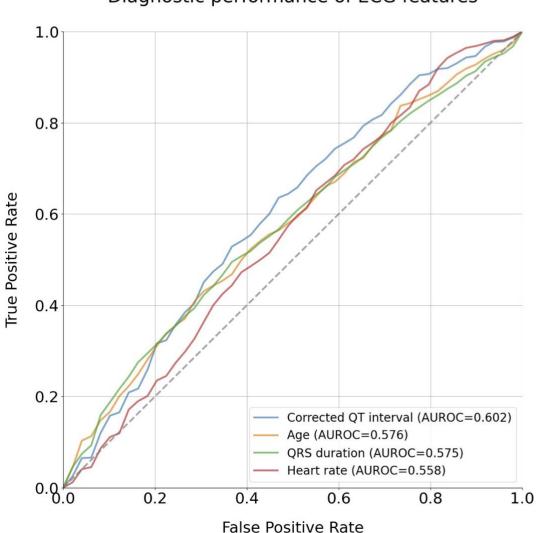

Deep learning architecture

- ResNet-34
- With kernel size modification (12x5,000)
- Python 3.8, PyTorch 1.8.1

Transfer learning

	For pre-training	For transfer-learning		
Batch size	32	32		
Learning rate	5.00E-04	1.00E-04		
Epochs	30	15		
Optimizer	Adam	Adam		
Beta1	0.9	0.9		
Beta2	0.999	0.999		
Weight decay	No weight decay	1.00E-04		
Scheduler	Cosine annealing learning rate scheduler	Cosine annealing learning rate scheduler		
Loss	Binary cross-entropy	Cross-entropy		

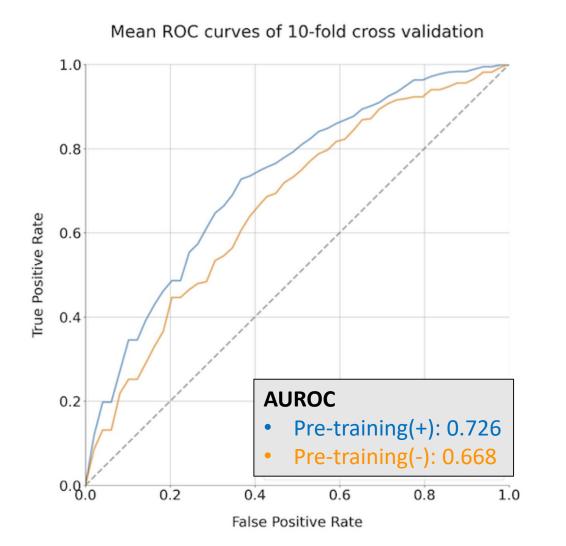
- DTraining : Validation = 9 : 1
- 10-fold cross validation
- Repeat over 10 times for each fold
- Performance metrics: SN, SP, PPV, NPV, Accuracy, AUROC
- Calibration plots



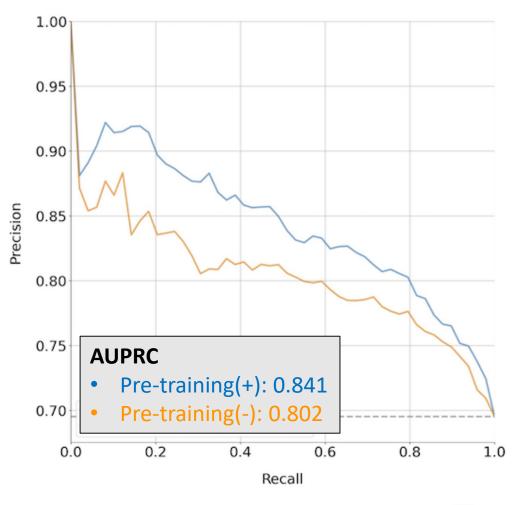
Result: *baseline characteristics*

	AVNRT (N=696)	Concealed AVRT (N=305)	P-value
Age (yr)	<mark>51 (36–60)</mark>	<mark>48 (28–57)</mark>	<mark><0.001</mark>
Men	239 (34.3)	<mark>193 (63.3)</mark>	<mark><0.001</mark>
Heart rate (per min)	69 (65–77)	68 (62–76)	0.007
PR interval (ms)	152 (138–166)	152 (138–164)	0.96
QRS duration (ms)	90 (84–98)	94 (86–100)	< 0.001
Corrected QT interval (ms)	428 (412–441)	418 (401–435)	< 0.001
P axis (degree)	55 (40–65)	54 (36–65)	0.546
R axis (degree)	55 (31–73)	59 (32–76)	0.072
T axis (degree)	44 (30–56)	47 (30–58)	0.263
Premature atrial complex	11 (1.6)	5 (1.6)	0.946
Premature ventricular complex	8 (1.1)	8 (2.6)	0.087
Left ventricular hypertrophy	11 (1.6)	8 (2.6)	0.266
Low voltage	7 (1.0)	1 (0.3)	0.268
Early repolarization	16 (2.3)	13 (4.3)	0.088
Right atrial enlargement	6 (0.9)	6 (2.0)	0.139
Left atrial enlargement	12 (1.7)	8 (2.6)	0.35
1st degree atrioventricular block	16 (2.3)	4 (1.3)	0.304
Right bundle branch block	33 (4.7)	5 (1.6)	0.018
Left bundle branch block	0 (0)	0 (0)	>0.999
Left anterior fascicular block	7 (1.0)	1 (0.3)	0.268
Left posterior fascicular block	1 (0.1)	0 (0)	0.508
Bifascicular block	2 (0.3)	0 (0)	0.349
Any infarct	26 (3.7)	11 (3.6)	0.921
Any ischemia	18 (2.6)	10 (3.3)	0.541

Result: C-statistics



FeatureAUROCQTc interval0.602Age0.576QRS duration0.575Heart rate0.558



Diagnostic performance of ECG features

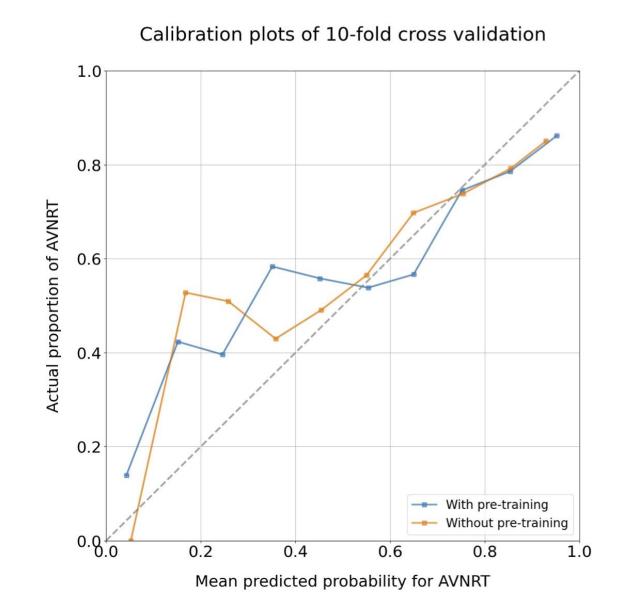
Result: *deep learning performance*

Mean PR curves of 10-fold cross validation

SNUH · 서울대학교병원

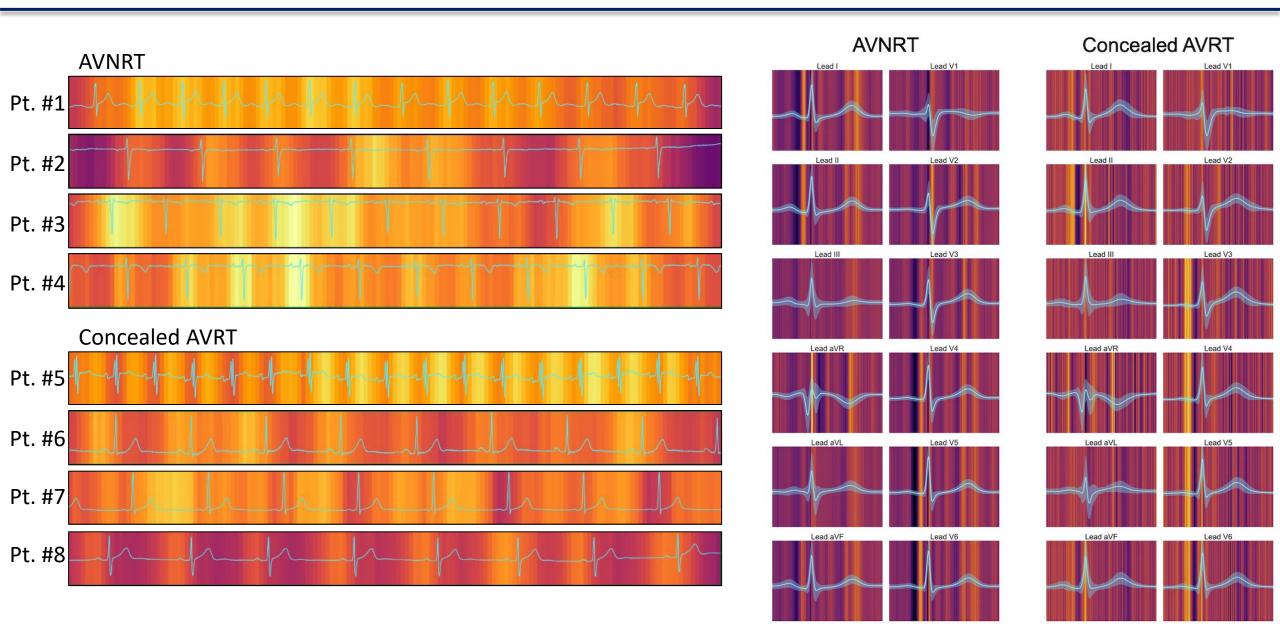
	AUROC	AUPRC	F1-score	Sensitivity	Specificity	PPV	NPV
	(95% CI)	(95% CI)	(95% CI)	(95% Cl)	(95% CI)	(95% CI)	(95% CI)
Pre-training	0.67	0.80	0.73	0.68	0.63	0.81	0.49
(-)	(0.62-0.72)	(0.76-0.84)	(0.67-0.79)	(0.58-0.79)	(0.52-0.73)	(0.78-0.85)	(0.43-0.56)
Pre-training		0.84	0.74	0.68	0.71	0.85	0.51
(+)		(0.81-0.87)	(0.70-0.80)	(0.61-0.75)	(0.65-0.77)	(0.82-0.87)	(0.47-0.55)

> Improved performance with transfer learning



	AUROC (95% CI)	AUPRC (95% CI)	F1-score (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
ECG raw data learning only	0.73 (0.69-0.76)	0.84 (0.81-0.87)	0.75 (0.70-0.80)	0.68 (0.61-0.75)	0.71 (0.65-0.77)	0.85 (0.82-0.87)	0.51 (0.47-0.55)
+ECG feature learning	0.71 (0.66-0.75)	0.83 (0.80-0.86)	0.74 (0.69-0.79)	0.69 (0.61-0.77)	0.66 (0.56-0.76)	0.83 (0.80-0.87)	0.50 (0.45-0.55)

> No improvement by additional feature learning



Result: model's calibration

Result: *feature attribution by ECG segments*

- Deep learning classification of AVNRT and concealed AVRT using sinus rhythm ECG is feasible
- Transfer learning of general structure of ECG improved model's performance
- External validation and investigation of other types of arrhythmias are warranted in future studies

